

IGEP [™] COM AQUILA AM₃₃₅x

HARDWARE REFERENCE MANUAL

Document: Revision: Date: MAN-PR-IGEP0033-RBxx-002 3.0 27/06/2016

ISEE

Integration Software & Electronics Engineering.

c/ Marcos Redondo, 5 Valldoreix E08197 - Sant Cugat del Vallès SPAIN +34 93 5763931 info@iseebcn.com http://www.isee.biz/

Table of contents

1 USE	RINFORMATION	4
1.1	ABOUT THIS DOCUMENT	4
1.2	COPYRIGHT NOTICE	4
1.3	TRADEMARKS	4
1.4	STANDARDS	4
1.5	WARRANTY	4
1.6	TECHNICAL SUPPORT	5
2 INTF	RODUCTION	6
2.1	PRODUCT DESCRIPTION	6
2.2	IGEP [™] COM AQUILA AM ₃₃₅ × BENEFITS AND APPLICATIONS	7
2.3	The IGEP [™] COM AQUILA AM ₃₃₅ x SERIES	7
2.4	ORDERING INFORMATION	8
2.5	EXPANSIONS BOARDS	8
3 OVE	RVIEW	9
3.1	IGEP [™] COM AQUILA AM ₃₃₅ x	9
3.2	IGEP [™] COM AQUILA AM ₃₃₅ x FEATURES	10
3.3	IGEP [™] COM AQUILA AM ₃₃₅ x VARIANTS	11
3.4	AM ₃₃₅ x ARM CORTEX-A8 PROCESSORS	12
4 PRO	DUCT SPECIFICATION	13
4.1	IGEP™ COM AQUILA AM335× BLOCK DIAGRAM	13
4.2	POWER SOURCES	14
4.3	CONTROL SIGNALS	18
4.4	ETHERNET	22
4.5	USB CONNECTIONS	24
4.6	I2C: Inter-Integrated Circuit Interface	27
4.7	PWM: Pulse-Width Modulation	28
4.8	SPI: Serial Peripheral Interface	29
4.9	MMC: Multi Media Card Interface	30
4.10	UART: Universal Asynchronous Receiver-Transmitter	31
4.11	CAN BUS: Controller Area Network	33
4.12	I2S: Serial Audio Port	34
4.13	LCD CONTROLLER	35
4.14	GPIO: General Purpose Input Output	38
	ISEE 2007 S.L. All rights reserved, IGEP is a registered trademark from ISEE 2007 S.L. The following is provided for informational purposes only.	2

4.15	ADC: General Purpose Analog-to-Digital Converter	39					
4.16	ENVIRONMENTAL SPECIFICATION	40					
4.17	STANDARDS AND CERTIFICATION	40					
4.18	MTBF	41					
4.19	MECHANICAL SPECIFICATION	41					
5 ON-	BOARD INTERFACES	43					
5.1	SUMMARY	43					
5.2	SD: Secure Digital Reader	43					
5.3	LEDs	44					
5.4	JTAG	44					
6 SOD	IMM-200 EXPANSION CONNECTOR INTERFACE	47					
6.1	PINOUT TABLE OF SODIMM-200 EXPANSION INTERFACE	49					
7 ELE	CTRICAL CHARACTERISTICS	56					
8 LIST	OF TABLES	57					
9 LIST	LIST OF FIGURES 57						
10CH/	ANGE HISTORY	59					

3

1 USER INFORMATION

1.1 ABOUT THIS DOCUMENT

This document provides information about products from ISEE 2007 SL and/or its subsidiaries. No warranty of suitability, purpose, or fitness is implied. While every attempt has been made to ensure that the information in this document is accurate, the information contained within is supplied "as-is" and is subject to change without notice.

For the circuits, descriptions and tables indicated, ISEE 2007 SL assumes no responsibility as far as patents or other rights of third parties are concerned.

1.2 COPYRIGHT NOTICE

This document is copyrighted, 2013-2016, by ISEE 2007 SL.

All rights are reserved. ISEE reserves the right to make improvements to the products described in this manual at any time without notice. No part of this manual may be reproduced, copied, translated or transmitted in any form or by any means without the prior written permission of the original manufacturer.

Information provided in this manual is intended to be accurate and reliable. However, the original manufacturer assumes no responsibility for its use, nor for any infringements upon the rights of third parties, which may result from its use.

1.3 TRADEMARKS

IGEP[™]® is trademark of ISEE. ISEE is trademark or registered trademark of ISEE 2007 SL.

Product names, logos, brands and other trademarks featured or referred to within this user's guide, or the ISEE website, are the property of their respective trademark holders. These trademark holders are not affiliated with ISEE, our products or our website.

1.4 STANDARDS

ISEE 2007 SL is being certified ISO 9001:2015

1.5 WARRANTY

THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies ISEE 2007 SL from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

ISEE 2007 SL currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive. ISEE assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

Please read specifically, the Warnings and Restrictions notice in this manual prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on IGEP[™] environmental and/or safety programs, please contact with ISEE (support@iseebcn.com).

No license is granted under any patent right or other intellectual property right of ISEE covering or relating to any machine, process, or combination in which such ISEE products or services might be or are used.

NOTE: It could be found a detailed warranty and sales conditions of IGEP[™] on ISEE website: <u>www.isee.biz</u>

1.6 TECHNICAL SUPPORT

Technicians and engineers from ISEE 2007 SL and/or its subsidiaries are available for technical support. We are committed to make our product easy to use and will help you use our products in your systems.

Please consult our Website at https://www.isee.biz for the latest product documentation: hardware resources (schematics, mechanical drawings, layouts, etc) and software resources (firmware binaries and sources). You can also contact directly with our Technical Department and we will assist you with any queries or problems you may have (support@iseebcn.com).

2 INTRODUCTION

2.1 PRODUCT DESCRIPTION

The IGEP[™] COM AQUILA AM₃₃₅x is an industrial ultra-low computer module based on ARM Cortex-A8 at speeds up to 1 GHz by Texas Instruments Sitara AM₃₃₅x family of processors.

It's an industrial computer module (it can work in a temperature range from -40°C to +85°C), in a very low profile (its dimensions are only 67,2mm x 26mm). With different combinations of RAM and Flash memory (see the customized possibilities at chapter 2.4), a complete list of interfaces and peripherals including 3D graphic accelerator, it can be the base for a complex industrial equipment or any other kind of application.

There is also an expansion board (IGEP[™] COM AQUILA EXPANSION BOARD) to complement the module. It's a development baseboard and it can be used as the fastest way to develop and test the final application before the prototyping phase.

Highlights:

- Fully tested, highly reliable, scalable, efficient and high performing board that allows customers to focus on their end application.
- Designed for industrial range purposes (temperature range: -40°C to +85°C).
- With ultra-compact design and extended temperature range it's adaptable to any custom baseboard.
- Easy connectivity through the SODIMM 200 pin connector. Very small form factor size (67,6x26mm).
- ₃V₃ I/O level signals.
- MicroSD card reader on-board.
- JTAG interface available.
- It is based on Texas Instruments® AM₃₃₅x processor which has an advanced Cortex-A8 ARM Architecture version 7 ISA CPU.
- The AM₃₃₅x Family processors are based on the enhanced device architecture and include the NEON[™] Media coprocessor.
- This architecture of high performance applications processor is designed to provide best in class ARM and graphics performance while delivering low power consumption.
- Ka-Ro[™] Electronics TX48 Form Factor Compatible.
- 10/100 Mbps Ethernet MAC+PHY interface.
- RTC on board.
- Flexible Memory of Flash Memory combinations (customized option).
- Over Voltage protection.

2.2 IGEPTM COM AQUILA AM₃₃₅x BENEFITS AND APPLICATIONS

There are a lot of advantages that developers will find in the IGEP[™] COM AQUILA AM₃₃₅x series. On broad terms, it's a friendlier way to achieve your projects. Amongst others, the main benefits are the following:

- Compact and powerful core for new products
- Robust and easy to mount due to the SODIMM-200 connector
- Reduced time to market
- Low power consumption ≤ 1,5W
- Industrial Temperature Range -40 to +85°C.
- Extended life range product (min 10 years)

At the same time, it can be implemented in all kind of end applications. The followings are just a few ones, but the list can be as long as the imagination of the developers.

- Connected vending machines
- Home / Building automation
- Human Interface
- Industrial Control
- Test and Measurement

2.3 The IGEP[™] COM AQUILA AM₃₃₅x SERIES

The IGEP[™] COM AQUILA AM₃₃₅x series is composed by a main model and four custom models. They are all made with the same care and quality that ISEE customers already know and trust.

The standard model, IGEP[™] COM AQUILA AM3354, is based on the chip AM3354, with a 256 MB DDR3 SDRAM memory and using a 128 MB NandFlash as internal storage memory.

The custom models use another CPU variants (available models: AM3352, AM3358 and AM3359), RAM (up to 512 MB) and NandFlash (up to 512 MB). In the chapter 3.3 are commented the main differences according to processor model. The custom models have a MOQ of 100 units.

7

2.4 ORDERING INFORMATION

IGEP [™] Device	Model Reference	Description
IGEP [™] COM AQUILA AM3354	IGEP0033-RB1x	Processor: T. I. AM3354BZCZD80 (ARM Cortex-A8) RAM Memory: 256 MB DDR3 SDRAM Storage: 128 MB NANDFLASH
Customized models		
IGEP [™] COM AQUILA AM3352	IGEP0033-RB2X	Processor: T. I. AM3352BZCZD80 (ARM Cortex-A8) RAM Memory: 128 MB up to 512 MB DDR3 SDRAM Storage: 128 MB up to 512 MB NANDFLASH
IGEP [™] COM AQUILA AM3354	IGEPoo33-RB3x	Processor: T. I. AM3354BZCZD80 (ARM Cortex-A8) RAM Memory: 512 MB DDR3 SDRAM Storage: 128 MB NANDFLASH
IGEP [™] COM AQUILA AM ₃₃₅ 8	IGEPoo33-RB4x	Processor: T. I. AM3358BZCZA80 (ARM Cortex-A8) RAM Memory: 128 MB up to 512 MB DDR3 SDRAM Storage: 128 MB up to 512 MB NANDFLASH
IGEP [™] COM AQUILA AM3359	IGEPoo33-RB5x	Processor: T. I. AM3359BZCZA80 (ARM Cortex-A8) RAM Memory: 128 MB up to 512 MB DDR3 SDRAM Storage: 128 MB up to 512 MB NANDFLASH

Table 1 IGEP0033 Ordering Information

2.5 EXPANSIONS BOARDS

All the products in the IGEP[™] COM AQUILA AM₃₃₅x series can be supplemented with next expansion board.

IGEP [™] AQUILA EXPANSION BASE0033-RA01 Designed for fast prototyping of user's projects	IGEP [™] Device	Model Reference	Description
	IGEP [™] AQUILA EXPANSION	BASE0033-RA01	Designed for fast prototyping of user's projects

Table 2 BASE0033 Ordering Information

3 OVERVIEW

3.1 IGEPTMCOM AQUILA AM335x

Figure 1 IGEP[™] COM AQUILA AM₃₃₅x − Top View

Figure 2 IGEP[™] COM AQUILA AM₃₃₅x – Bottom View

3.2 IGEPTM COM AQUILA AM₃₃₅× FEATURES

Feature	Specifications						
IGEP [™] COM AQUILA	Texas Instruments AM335x ARM Cortex−A8 [™]						
AM ₃₃₅ x ARM CPU	L1 cache: 32 KB (ARM)						
	L2 cache: 256 KB (ARM)						
	NEON [™] SIMD Coprocessor						
	DMA, Interrupt controllers, Timers						
	POWERVR© SGX530 3D Graphics (only available for some processors)						
RAM Memory	256 MB DDR3 SDRAM, up to 512 MB and 400 MHz clock						
Storage	128 MB SLC NANDFLASH up to 512 MB						
	On board micro-SD socket. Can be plugged SDHC cards up to 32 GB.						
Power to SODIMM-200 connector	Supply Voltage (VIN) from 3.8 V to 5.5 V DC						
Interfaces	1 x SODIMM 200-pin expansion interface (DDR1 2V5 compatible)						
	1 x JTAG interface						
	1 x MICRO-SD socket						
Devices	1 x Double LED indicator:						
	Red LED for 3V3 Power On						
	Green LED for user application						
	1 x 10/100Mbps Ethernet PHY interface						
	1 x 3V3 / 1A Supply (VOUT) from SODIMM-200 interface						
	1 x 3V SCL NAND chip for internal memory						
	1 x Positive overvoltage protection for VIN						
	1 x 32 kHz crystal for clock						

Table 3 On-board features

3.3 IGEP[™] COM AQUILA AM₃₃₅× VARIANTS

The IGEP[™] COM AQUILA AM₃₃₅x modules are based in Texas Instruments Sitara AM₃₃₅x Family (ARM Cortex-A8 processor). In the next figure are reflected the main differences of each model. The customized possibilities are collected in the chapter 2.4 (Page 8 -Ordering Information-).

Contact with sales@iseebcn.com for more information.

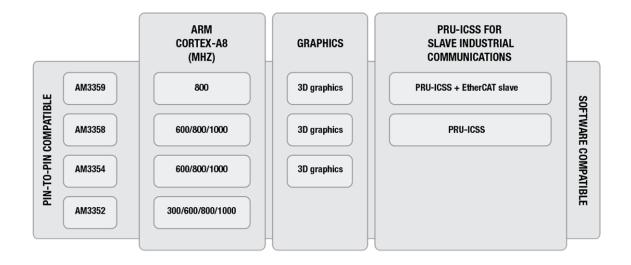


Figure 3 Texas Instruments[™] AM335x Family Features

11

AM335X ARM CORTEX-A8 PROCESSORS 3.4

The AM335x, by Texas Instruments, are a family of highly integrated microprocessors based on the ARM Cortex-A8 processor. They have a high performance at low cost and are delivered with optional 3D graphics acceleration and key peripherals. They also include industrial options (such as EtherCAT and PROFIBUS) and support different high-level operating systems (Linux and Android).

AM335x Cortex[™]-A8 based processors

Benefits

- High performance Cortex-A8 at ARM9/11 prices Rich peripheral integration reduces system complexity and cost

Sample Applications Industrial / Home Automation

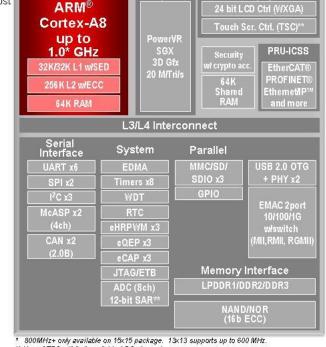
- · Portable Navigation Devices
- · Smart Appliances · Low power instrumentation
- Robotics
- · Wireless Accessories
- Consumer electronics
 - Networking

Software and development tools

- Free Linux and Android support packages direct from TI
- StarterWare enables quick and simple programming and migration among TI embedded processors WinCE and RTOS (QNX, Wind River, Mentor, etc.) from
- partners Full featured and low cost development board options

Power Estimates

- Total Power: 600mW-1000mW Standby Power: ~25mW
- Deep Sleep Power: ~5-7mW


Schedule and packaging

- Status: In production Dev. Tools: Available today
- Docs: Available today
- Packaging: 15x15, 0.8mm 13×13, 0.65mm via channel array

More Information

www.ti.com/am335x

Availability of some features, derivatives, or packages may be delayed from initial silicon availability Peripheral limitations may apply a mong different packages Some features may require third party support All speeds shown are forcomme rolai temperature range only

Graphics

Display

** Use of TSC will limit available ADC channels SED: single error detection/parity

🐌 Texas Instruments

Figure 4 AM335x Processors Block Diagram

4 PRODUCT SPECIFICATION

4.1 IGEPTM COM AQUILA AM335x BLOCK DIAGRAM

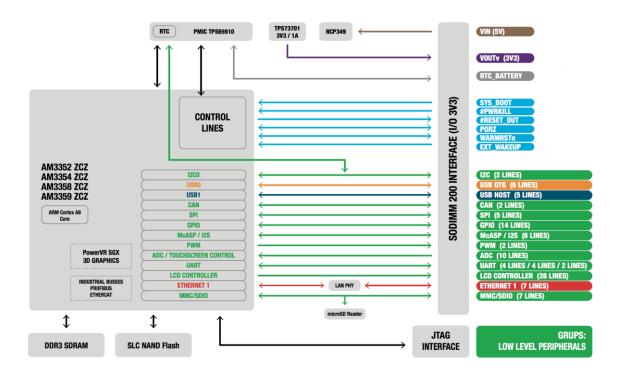


Figure 5 IGEP[™] COM AQUILA AM₃₃₅x Block Diagram

4.2 POWER SOURCES

Supply Voltage

IGEP[™] COM AQUILA AM₃₃₅x module cannot be used as stand-alone module, so keep in mind that expansion board must power VIN signal input, this signal is defined into SODIMM-200 interface (from pin 1 to 4). VIN signal can vary from 3,8V to 5,5V DC, for more information see electrical characteristics table in Chapter 7.

EXPANSION BOARD	
	IGEP™ COM AQUILA
	PINS: 14
	↑
VIN	
POWER INTERFACE	
3,8 - 5,5 V	

Figure 6 Power Supply Input Diagram

Output Voltage and ADC Voltage reference

IGEP[™] COM AQUILA AM₃₃₅x module has a linear regulator that provides an output voltage 3,3 V @ 1 A (VOUT), VOUT signal is defined into SODIMM-200 interface from pin 5 to 7 and 9 to 12. If expansion board uses VOUT power supply, Hardware designer should take care to calculate VIN max current consumption.

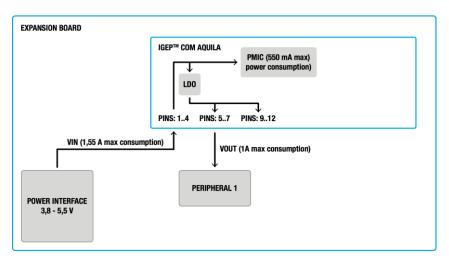


Figure 7 Power Supply Output Diagram

There is also available an output power reference supply (VREFP_ADC) of 1,8 V, defined into SODIMM-200 interface pin 184. It's used to fix the reference positive voltage for analog-to-digital converters (ADC).

RTC Battery

The RTC_BATTERY signal (SODIMM-200 interface pin 13) allows to maintain RTC peripheral from IGEP™ COM AQUILA AM335x module when it is not power supplied (VIN). An example can be found into figure 8.

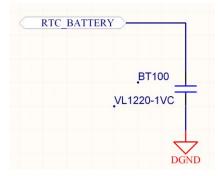


Figure 8 RTC Battery

GND Pins

Digital Ground

All the digital GND pins are internally connected together, so it's not need to connect all of them. However, the user has to considerer how many of them connect according the total consumption of the complete circuit (the IGEP[™] COM Aquila AM₃₃₅x and the base board developed). At the same time, to make the routing of buses easier, the ground connection chosen will be the nearest to the function used.

There have to be a minimum of 4 GND pins connected, distributed in the most possible equal way along the SODIMM-200 connector (to get an equalized ground).

Analog Ground

AGND_ADC (SODIMM-200 interface pin 183) is a dedicated ground for IGEP[™] COM AQUILA AM₃₃₅x module analog converters. It improves analog captures avoiding the noise introduced by the logic ground when both grounds are detached.

GND Earth

Hardware designer must take care of GND Earth.

In the figure 9 is an example about how to connect these grounds. The digital and analog grounds are separated by an EMI filter. By the other way, in order to enable GND Earth, R100 resistor must be unmounted and connect J991 to GND Earth source.

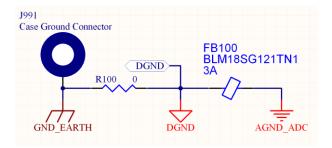


Figure 9 Ground Connections

Pin	Volt	Dev	Main	Main	Туре	Fixed	Comments
r II I	Level	Pin	Function	MUX	Type	Function	comments
сV INP	UT POWE		ronetion	WOX		Tonction	
1	5V	NA	VIN	NA	Power	Yes	Pins used to power up the module.
2	5V 5V	NA	VIN	NA	Power	Yes	Source voltage should be between $4V - 5.5V$
3	5V 5V	NA	VIN	NA	Power	Yes	Source voltage should be between 4v 5.5v
3 4	5V 5V	NA	VIN	NA	Power	Yes	
			VIIV	117.4	rower	105	
5 5	₃ V ₃	NA	VOUT	NA	Power	Yes	Pins used as external 3V3@1A source voltage for a base board
5 6	3V3	NA	VOUT	NA	Power	Yes	
7	3V3	NA	VOUT	NA	Power	Yes	
9	3V3	NA	VOUT	NA	Power	Yes	
10	3V3	NA	VOUT	NA	Power	Yes	
10	3V3	NA	VOUT	NA	Power	Yes	
12	3V3	NA	VOUT	NA	Power	Yes	
	ATTERY	107	1001	107	1 offici	105	
13	VBAT	NA	RTC_BATTER	NA	Power	Yes	RTC battery positive pin. Battery or capacitor limit voltage should
-5	12/11		Y		1 offici	105	be:
			-				2V52; 3V; 3V15 and VIN
1V8 OI	JTPUT PO	WER				<u> </u>	51515 5
184	1V8	D8	VREFP_ADC	NA	Power	Yes	Supply voltage range for ADCs
	AL GROUN	D				1 1	
18	GND	NA	DGND	NA	Power	Yes	Digital Ground
26	GND	NA	DGND	NA	Power	Yes	Digital Ground
32	GND	NA	DGND	NA	Power	Yes	Digital Ground
39	GND	NA	DGND	NA	Power	Yes	Digital Ground
50	GND	NA	DGND	NA	Power	Yes	Digital Ground
58	GND	NA	DGND	NA	Power	Yes	Digital Ground
71	GND	NA	DGND	NA	Power	Yes	Digital Ground
82	GND	NA	DGND	NA	Power	Yes	Digital Ground
88	GND	NA	DGND	NA	Power	Yes	Digital Ground
94	GND	NA	DGND	NA	Power	Yes	Digital Ground
102	GND	NA	DGND	NA	Power	Yes	Digital Ground
111	GND	NA	DGND	NA	Power	Yes	Digital Ground
116	GND	NA	DGND	NA	Power	Yes	Digital Ground
129	GND	NA	DGND	NA	Power	Yes	Digital Ground
142	GND	NA	DGND	NA	Power	Yes	Digital Ground
147	GND	NA	DGND	NA	Power	Yes	Digital Ground
160	GND	NA	DGND	NA	Power	Yes	Digital Ground
171	GND	NA	DGND	NA	Power	Yes	Digital Ground
200	GND	NA	DGND	NA	Power	Yes	Digital Ground
ANAL	OG GROUN	1D					
183	GND	E8	VSSA_ADC	NA	Power	Yes	Analog Ground for ADCs

Table 4 Power Sources pins

17

4.3 CONTROL SIGNALS

There are different pins used as general control signals. They affect: Boot Mode, management of the power supply, resets and wake up the system from a state of suspension.

Boot Mode

The Boot mode functionality (SODIMM-200 interface pin 8) is equivalent to #SYS_BOOT4 (SYS_BOOT4 inverted) signal. When IGEP[™] COM AQUILA AM₃₃₅x module is powered on, it reads this pin and it boots from NAND/MMCo or MMCo in function of its status, the following table shows the complete sequence.

Pin #8	Boot Mode					
NC Sequence: UARTo → SPIo → XIP → MMCo						
DGNG Sequence: NAND → NANDI₂C → MMCo → UARTo						
Table = Deat Made nin						

Table 5 Boot Mode pin

#SYS_BOOT4 pin uses LCD_DATA4 signal (SODIMM-200 interface pin 141) to control sysboot mode. Hardware designer can use independently LCD_DATA4 and #SYS_BOOT4 signals because there are isolated.

It's recommended to use a jumper header or a switch in series with a low resistor value (as a short circuit protector element) tied to GND into expansion board.

#SYS BOOT4		R109 150R	1 0 2	
	_		JUMPER	
			J101	
				\leftarrow
				DGND

Figure 10 Boot Mode: Jumper Selector

Reset pins

There are three different Reset-IOs: #PWR_KILL (SODIMM-200 interface pin 14), PORZ (SODIMM-200 interface pin 16) and WarmResetn (SODIMM-200 interface pin 17):

If #PwrKill is driven to Low state (default timeout 8 seconds), power supplies from PMIC will be turned off until #PwrKill is set High. The following diagram shows #PwrKill distribution.

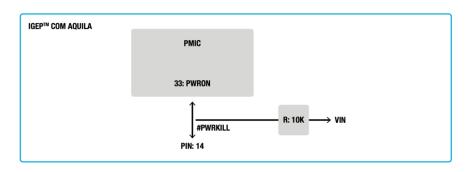


Figure 11 PowerKill Reset

If PORz is driven to Low state (at least 154 microseconds), Power-On-Reset (PORz) will be active and will reset the complete processor and all the logic that uses asynchronous reset. The following diagram shows PORz distribution.

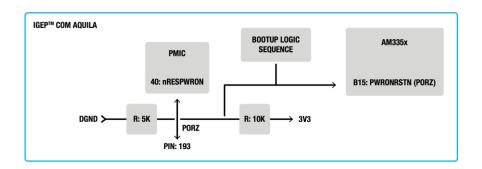
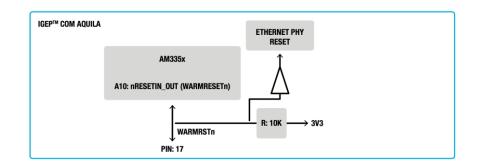



Figure 12 PORz – Power-On-Reset

If WarmResetn is driven to Low state (at least 90 nanoseconds), Warm Reset is active and reset partially the processor: the SYSBOOT pins are not latched, PLLs are not affected and most debug subsystem logic is not affected (this allows to maintain any debug session throughout a warm reset event). As an input, it's typically used by an external source as a device reset and as an output, it can be used to reset external devices. The following diagram shows WarmResetn distribution.

Figure 13 WarmReset

Moreover, there is a generic output reset signal (SODIMM-200 interface pin 15) controlled through of GPIO3_8. This reset doesn't affect to processor and it is intended to use for external peripherals. The following diagram shows #RESET_OUT distribution.

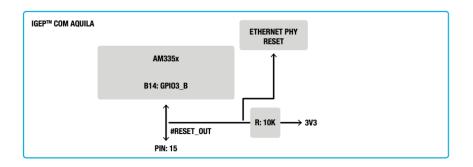
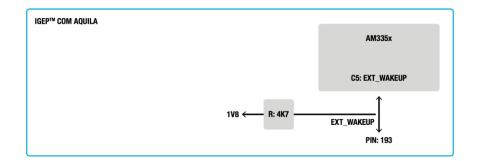



Figure 14 Reset Out

External Wake Up

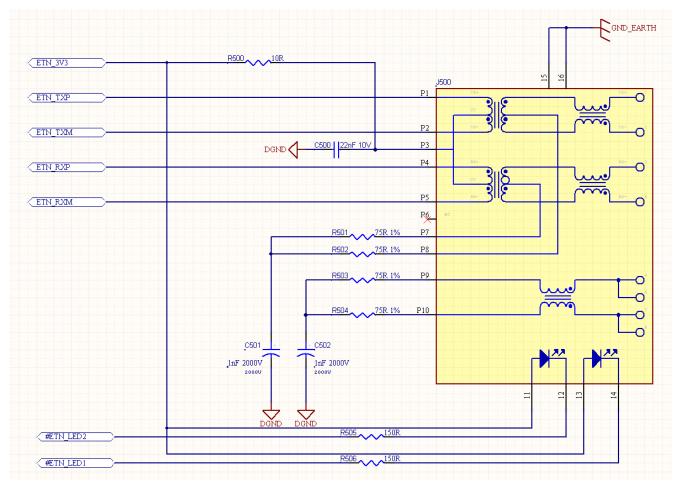
The last control signal is a Wake Up input (SODIMM-200 interface pin 193). EXT_WAKEUP is used to recover the processor from a state of suspension. The following diagram shows EXT_WAKEUP distribution.

Figure 15 Wake Up Input

Pin	Volt	Dev	Main Function	Main	Туре	Fixed	Comments
	Level	Pin		MUX		Function	
8	3V3	Tı	#SYS_BOOT4	0	IN	Yes	SYS_BOOT4 signal inverted. Sequence should be:
							NC: UARTO – SPIO – XIP – MMCo
							GND: NAND – NANDI2C – MMCo – UARTo
14	5V	NA	#PWRKILL	NA	10	Yes	Tied to GND to cut off power sources from PMIC
15	3V3	B14	#RESET_OUT	7	OUT	Yes	This pin is used as external reset source for a base board.
							Active Low
16	3V3	B15	PORZ	0	10	Yes	Power ON Reset. Active Low.
17	3V3	A10	WARMRSTn	0	10	Yes	Warm Reset. Active Low.
193	1V8	C5	EXT_WAKEUP	0	IN	Yes	EXT_WAKEUP input

Table 6 Control Signal pins

21


4.4 ETHERNET

The module can be connected to a standard 10 or 100 Mbps Ethernet system. For this function, there is a block of pins in the SODIMM-200 that can be connected directly to the Ethernet LAN. Both transmission and reception lines (TX and RX) are differential (in the pin function is indicated the Negative and Positive) and they should be connected to isolation magnetics. The data lines have to be equal length and symmetric, and respect a 100 Ω differential impedance in the layout traces. The differential pairs must be isolated from nearby signals and circuitry to maintain the signal integrity.

Moreover, the magnetics module has a critical effect so it has to be designed carefully. In order to obtain a smaller size, it's usual to use RJ45 connectors with the magnetics incorporated. If the magnetics are discrete components, they have to respect a separation under of 25mm between them and the RJ45 connector, and 20mm or greater between them and the SODIMM-200 connector.

There are also two outputs to manage LEDs. These LEDs are used to indicate the good functioning of the Ethernet connection. The first one (output #ETN_LED2, usually a yellow LED) gives an indication about the line speed (LED off for 10Mbps and LED on for 100Mbps). The other (output #ETN_LED1, usually a green LED) gives an indication about the line activity: LED on indicates a valid link; when LED is blinking there is data traffic.

In the next figure is shown an example of connection diagram, using a RJ45 jack with integrated magnetics.

Figure 16 Ethernet standard circuit

Pin	Volt	Dev	Main Function	Main	Туре	Fixed	Comments
	Level	Pin		MUX		Function	
19	DIF	NA	ETN_TXN	NA	ETH	Yes	Analog Transmit Data Negative. Differential output to magnetics
20	3V3	NA	#ETN_LED2	NA	OUT	Yes	Active Low. LED2 Yellow means 100Mbps speed. Inactive if
							10Mbps. Line isolated through a driver.
21	DIF	NA	ETN_TXP	NA	ETH	Yes	Analog Transmit Data Positive. Differential output to magnetics
22	3V3	NA	ETN_3V3	NA	Power	Yes	3V3 to magnetics
23	DIF	NA	ETN_RXM	NA	ETH	Yes	Analog Receive Data Negative. Differential output to magnetics
24	3V3	NA	#ETN_LED1	NA	OUT	Yes	Active Low. LED1 Green indicates valid link and blinks when
							there is activity. Line isolated through a driver.
25	DIF	NA	ETN_RXP	NA	ETH	Yes	Analog Receive Data Positive. Differential output to magnetics.
					T . I. I.	Etherness and a	

Table 7 Ethernet pins

23

4.5 USB CONNECTIONS

There are two possibilities to connect the module to other USB devices: with a standard Host base and with an OTG (On-The-Go) interface.

The USB 2.0 Host connection is provided for connecting other devices acting as Clients of the module (for example, an external HDD). The SODIMM-200 connector lines referred to this function are adapted for a USB type A receptacle (see wiring example in the next figure).

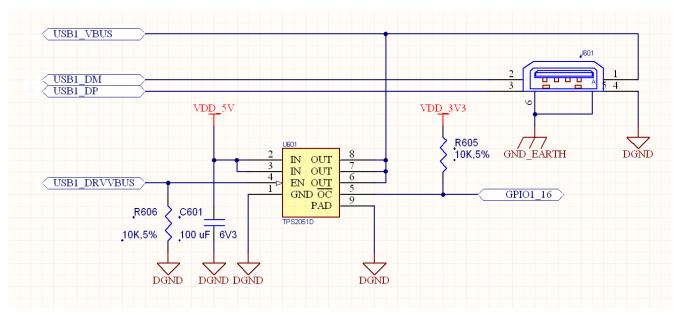


Figure 17 USB 2.0 Host connections

The USB 2.0 OTG connection allows the configuration of the board as Host or Client in function of the wire of connection used for linking both devices (the IGEPTM module and the external device; adapting the SODIMM-200 connector lines for an USB type AB). It's defined by the pin $#_{33}$ (ID): when the board detects this pin connected at ground, it will be an A-device; by the other side, if the pin is floating (NC) it will be a B-device.

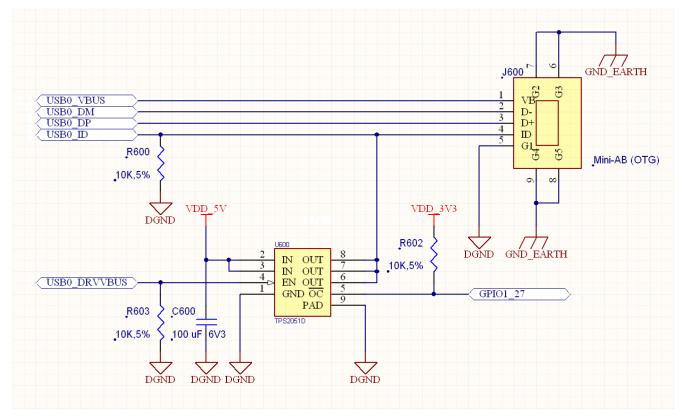


Figure 18 MiniUSB AB 2.0 OTG connections

The GPIO1_26 and GPIO1_27 are, in both cases, optional pins used to detect if there has been an overconsumption (for example a short-circuit). Although in the examples are used this references, it's possible to apply any other of the free GPIO pins if the user wants to implement this feature.

It must be respected a 90Ω (+/-15%) differential impedance in the layout traces when the base board will be designed. At the same time, the traces have to be equal length and symmetric, with regards of shape, length and via count. The differential pairs must be isolated from nearby signals and circuitry to maintain the signal integrity.

To protect the VBUS against overcurrent, the USB power source current have to be less or equal than 500mA, and the user must to provide a protection in the base board as it is showed into Figure 8 and Figure 9 examples. The IGEP[™] COM AQUILA AM₃₃₅x includes into each USB peripheral Transient voltage suppressors and Common mode filters.

The following table offers the list in the SODIMM-200 of the pins related with both of USB connections.

Pin	Volt	Dev	Main Function	Main	Туре	Fixed	Comments
	Level	Pin		MUX		Function	
USB H	IOST					•	
27	3V3	F15	USB1_DRVVBU	0	OUT	Yes	Active High. Enables external VBUS power supply
			S				
28	3V3	R13	GPIO1_16	7	IN	No	#USB1_OC: Active Low. Over current indication to module. It
							could be another GPIO from processor.
29	DIF	R18	USB1_DM	0	USB	Yes	Analog D- data pin of the USB cable
30	5V	T18	USB1_VBUS	0	Power	Yes	VBUS pin of the USB cable
31	DIF	R17	USB1_DP	0	USB	Yes	Analog D+ data pin of the USB cable
USB C	DTG						
33	ANAL	P16	USBo_ID	0	USB	Yes	ID pin of the USB cable. A-device is gounded; B-device is floating
	OG						
34	3V3	F16	USBo_DRVVBU	0	OUT	Yes	Active High. Enables external VBUS power supply
			S				
35	DIF	N18	USBo_DM	0	USB	Yes	Analog D- data pin of the USB cable
36	3V3	V17	GPIO1_27	7	IN	No	#USBo_OC: Active Low. Over current indication to module. It
							could be another GPIO from processor.
37	DIF	N17	USBo_DP	0	USB	Yes	Analog D+ data pin of the USB cable
38	5V	P15	USBo_VBUS	0	Power	Yes	VBUS pin of the USB cable

Table 8 USB pins

4.6 I2C: Inter-Integrated Circuit Interface

The IGEP[™] COM AQUILA AM₃₃₅x module can be connected to other peripheral devices by the I₂C serial bus. There are two pins in the SODIMM-200 that may be used for this application: The I₂Co data line and the I₂Co bus clock.

The IGEP COM AQUILA AM₃₃₅x uses a ₃V₃ voltage levels for I₂C buses. In some cases, bidirectional voltage translators should be necessary to adapt voltage levels between ICs.

In the next example, it has been connected an EEPROM to the IGEP COM AQUILA AM₃₃₅x using the I₂C interface.

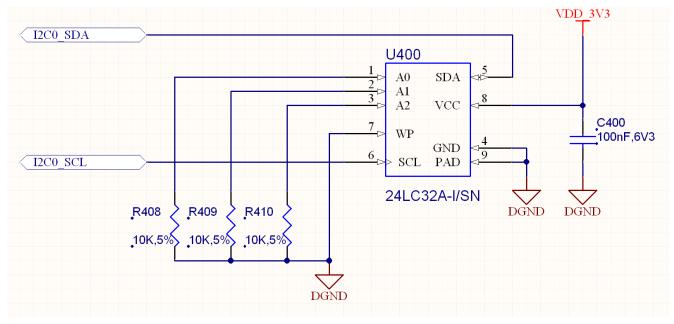


Figure 19 I2C example: EEPROM connection

If the user needs to use another I2C peripheral from another SODIMM-200 pins, it is necessary to add a 5K pull up resistors to data and clock lines.

Pin	Volt	Dev	Main Function	Main	Туре	Fixed	Comments
	Level	Pin		MUX		Function	
40	3V3	C17	I2Co_SDA	0	IO	Yes	I2Co bus data. ox2D is used by IGEP COM Aquila. This signal has a 5K PU resistor
41	3V3	C16	I2Co_SCL	0	10	Yes	I2Co bus clock. This signal has a 5K PU resistor

Table 9 I2C pins

4.7 PWM: Pulse-Width Modulation

If it's needed a control over other devices via a Pulse-Width Modulation (PWM), the module offers a PWM peripheral with 16 bits time-base with Period and Frequency control and two outputs.

If system frequency = SYSCLKOUT = 100MHz, that is, CPU clock. TBCLK = SYSCLKOUT (preescaler is set to x1), minimum PWM frequency is 1525 Hz (16 bits duty cycle resolution) and max PWM frequency is 5 MHz (4 bits duty cycle resolution). More information at chapter 15.2 from AM335x Technical Reference Manual.

In the next figure is shown a simple example in which is sent the PWM signal to a RC-filter.

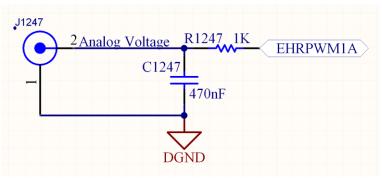
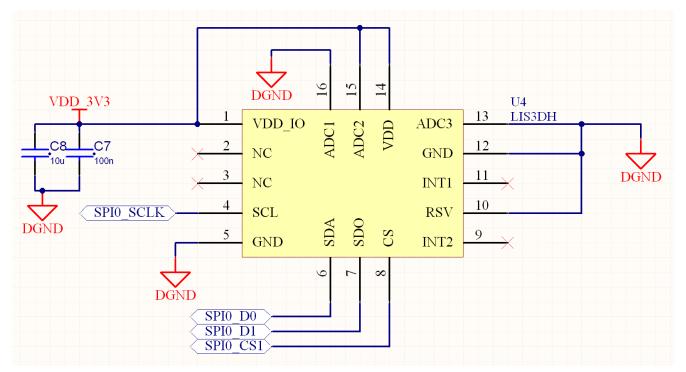


Figure 20 PWM example: RC filter

Pin	Volt	Dev	Main Function	Main	Туре	Fixed	Comments		
	Level	Pin		MUX		Function			
149	3V3	U14	EHRPWM1A	6	OUT	No	eHRPWM1 A output		
150	3V3	T14	EHRPWM1B	6	OUT	No	eHRPWM1 B output		


Table 10 PWM pins

4.8 SPI: Serial Peripheral Interface

The Serial Peripheral Interface (SPI) is one more of the different possibilities to connect the module to external peripherals. It's a full duplex synchronous bus, supporting a single master and up to two slave devices each SPI peripheral.

The IGEP[™] COM AQUILA AM₃₃₅x uses a ₃V₃ voltage levels for SPI buses. In some cases, voltage translators should be necessary to adapt voltage levels between ICs.

In the next figure is an example to connect the IGEP[™] COM AQUILA AM₃₃₅x module to an accelerometer via the Serial Peripheral Interface.

Figure 21 SPI example: accelerometer circuit

Pin	Volt	Dev	Main Function	Main	Туре	Fixed	Comments
	Level	Pin		MUX		Function	
44	3V3	A16	SPIo_CSo	0	OUT	No	SPIo Slave chip select o signal
45	3V3	C15	SPIo_CS1	0	OUT	No	SPIo Slave chip select 1 signal
46	3V3	B17	SPlo_Do	0	OUT	No	SPIo Master Output-Slave Input (MOSI)
47	3V3	B16	SPlo_D1	0	IN	No	SPIo Master Input-Slave Output (MISO)
48	3V3	A17	SPIo_SCLK	0	OUT	No	SPIo Clock

Table 11 SPI pins

4.9 MMC: Multi Media Card Interface

The IGEP[™] COM AQUILA AM₃₃₅x has two MMC (Multi Media Card) interfaces. The first one (MMCo) is used into on-board bootable uSD card reader socket. The user also has available a second interface (MMC1) into SODIMM-200 connector.

The module has installed in the board its own SD-Card reader and it's used to boot and check its global function when it's tested in factory.

The second interface (MMC1), which can be configured for other applications (in example, to expand memory capacities or used as a backup memory), is not available as a boot up device due *Boot Mode* configuration.

The next example shows how to connect a uSD card reader to MMC1, using a 10k pull-up resistor tied to 3V3 in the lines SD1_Dx, SD1_CD and SD1_CLK. Optionally, it's possible to use 10R series resistor in the same lines to avoid overshoot issues.

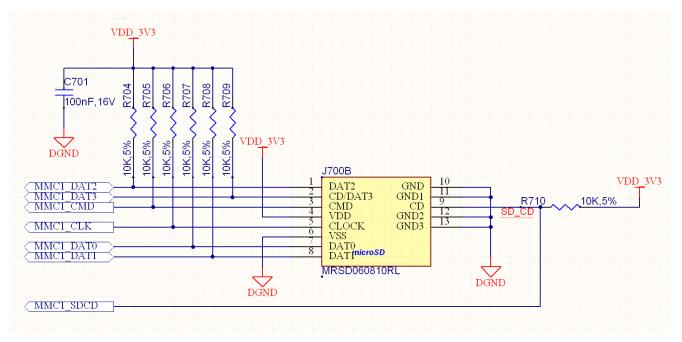


Figure 22 MMC example: uSD card reader

Pin	Volt	Dev	Main Function	Main	Туре	Fixed	Comments
	Level	Pin		MUX		Function	
51	3V3	B13	MMC1_SDCD	4	IN	No	SD Card Detect for MMC1. There are no components between
							this pin and AM335x ball
52	3V3	K18	MMC1_DAT0	4	10	No	MMC/SD/SDIO 1 Data Bus o. There are no components between
							this pin and AM335x ball
53	3V3	L18	MMC1_DAT1	4	10	No	MMC/SD/SDIO 1 Data Bus 1. There are no components between
							this pin and AM335x ball
54	3V3	L17	MMC1_DAT2	4	10	No	MMC/SD/SDIO 1 Data Bus 2. There are no components between
							this pin and AM335x ball
55	3V3	L16	MMC1_DAT3	4	10	No	MMC/SD/SDIO 1 Data Bus 3. There are no components between
							this pin and AM335x ball
56	3V3	٧٩	MMC1_CMD	2	10	No	MMC/SD/SDIO 1 Command. There are no components between
							this pin and AM335x ball
57	3V3	Ug	MMC1_CLK	2	10	No	MMC/SD/SDIO 1 Clock. There are no components between this
							pin and AM335x ball

Table 12 MMC pins

4.10 UART: Universal Asynchronous Receiver-Transmitter

There are three defined UART devices in the module in order to control serial devices or debug via serial. They are available in the SODIMM-200 in three blocks of pins.

The IGEP[™] COM AQUILA AM₃₃₅x uses a ₃V₃ voltage levels for UART buses. In some cases, voltage translators should be necessary to adapt voltage levels between ICs.

The IGEP[™] COM AQUILA AM₃₃₅x uses UARTo as a Kernel Debug Peripheral. This UART is an inexpensive method to detect and repair system issues. It's advisable to use another UART instead of UARTo to preserve this functionality. In the next figure is shown how to connect the UARTo to a popular serial debug connector (for example: TTL-232R-3V3).

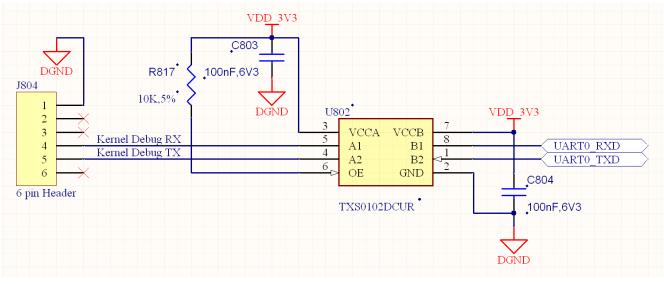


Figure 23 UARTo Debug connections

In the next figure is shown another example to use the UART1 as RS485 bus.

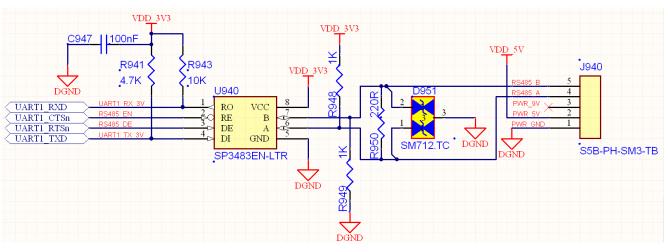


Figure 24 RS485 example: RS485 circuit

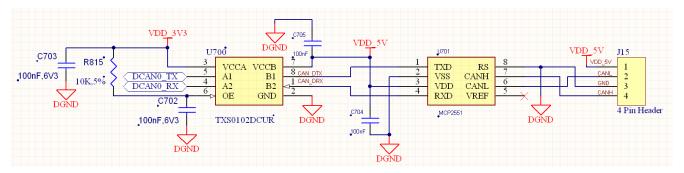

Pin	Volt	Dev	Main Function	Main	Туре	Fixed	Comments				
	Level	Pin		MUX		Function					
1 ST UA	1 ST UART										
59	3V3	E16	UARTo_TXD	0	OUT	No	Debug UARTo Transmit Data Output				
60	3V3	E15	UARTo_RXD	0	IN	No	Debug UARTo Receive Data Input				
61	3V3	E18	UARTo_CTSn	0	IN	No	UARTo CTSn Input				
62	3V3	E17	UARTo_RTSn	0	OUT	No	UARTo RTSn Output				
2 ND UA	2 ND UART										
63	3V3	D15	UART1_TXD	0	OUT	No	UART1 Transmit Data Output				
64	3V3	D16	UART1_RXD	0	IN	No	UART1 Receive Data Input				
65	3V3	D18	UART1_CTSn	0	IN	No	UART1 CTSn Input				
66	3V3	D17	UART1_RTSn	0	OUT	No	UART1 RTSn Output				
3 RD UA	3 RD UART										
67	3V3	J17	UART5_TXD	3	OUT	No	UART ₅ Transmit Data Output				
68	3V3	H16	UART5_RXD	3	IN	No	UART5 Receive Data Input				

Table 13 UART pins

4.11 CAN BUS: Controller Area Network

The module can be integrated in a global system using the serial standard CAN Bus. The CAN Bus is a standard designed to allow microcontrollers and devices to communicate with each other without a host computer. It's a differential half duplex data bus, using shielded or unshielded twisted differential pair wiring, with an impedance termination of 120Ω at the endpoints of the bus. Nodes on the bus are arranged in daisy-chain fashion.

A CAN Transceiver is needed on the baseboard to connect the system to the CAN Bus. In the next example, are showing this application using the MCP₂₅₅₁ chip (it's a high-speed CAN Transceiver).

Figure 25 CAN Bus circuit example

Pin	Volt	Dev	Main Function	Main	Туре	Fixed	Comments			
	Level	Pin		MUX		Function				
76	3V3	J18	DCANo_TX	1	OUT	No	CANo Transmission line			
81	3V3	K15	DCANo_RX	1	IN	No	CANo Reception line			

Table 14 CAN pins

4.12 I2S: Serial Audio Port

It's also available a MCASP transceiver. It's a digital multichannel audio serial port used by microprocessors, DSPs and popular industry audio CODECs that implement the inter-IC sound bus standard (I2S).

In the next example is connected a Stereo CODEC with Headphone AMP to the Serial Audio Port in the IGEP[™] COM AQUILA AM₃₃₅x module.

DEV_SLP register of the PMIC must be at o to use the pin MCASPo_CLKX. Default firmware allows to use this functionality. For more information, refer to Texas Instruments TPS65910 manual.

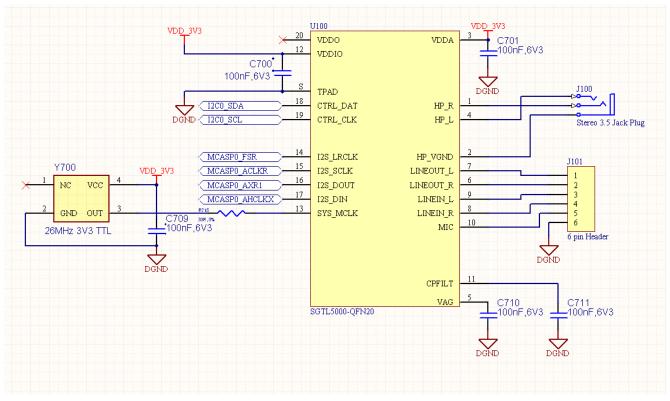


Figure 26 I2S example: Stereo CODEC with Headphone AMP

Pin	Volt	Dev	Main Function	Main	Туре	Fixed	Comments
	Level	Pin		MUX		Function	
83	3V3	D12	MCASPo_AXRo	0	10	No	McASPo Serial Data (IN/OUT) o
84	3V3	D13	MCASPo_AXR1	0	10	No	McASPo Serial Data (IN/OUT) 1
85	3V3	A14	MCASPo_AHCL	0	10	No	McASPo Transmit Master Clock
			KX				
86	3V3	B12	MCASPo_ACLK	0	10	No	McASPo Receive Bit Clock
			R				
87	3V3	C13	MCASPo_FSR	0	10	No	McASPo Receive Frame Sync
158	3V3	V16	McASPo_ACLK X	6	Ю	No	McASPo Transmit Bit Clock

Table 15 McASP (I2S) pins

4.13 LCD CONTROLLER

There is a set of pins in the SODIMM-200 connector used as the parallel data bus to control a LCD screen used by the user.

Common mode capacitors could be added (optionally) between video data lines and GND for high frequency noise attenuation. Typical capacitance values should be between 22pF and 47pF.

Low resistance capacitors should be necessary to protect overshoot voltage. It can be solved using a 10R series resistor to data and clock lines.

In the next page is an example of circuit to get a LCD to HDMI interface.

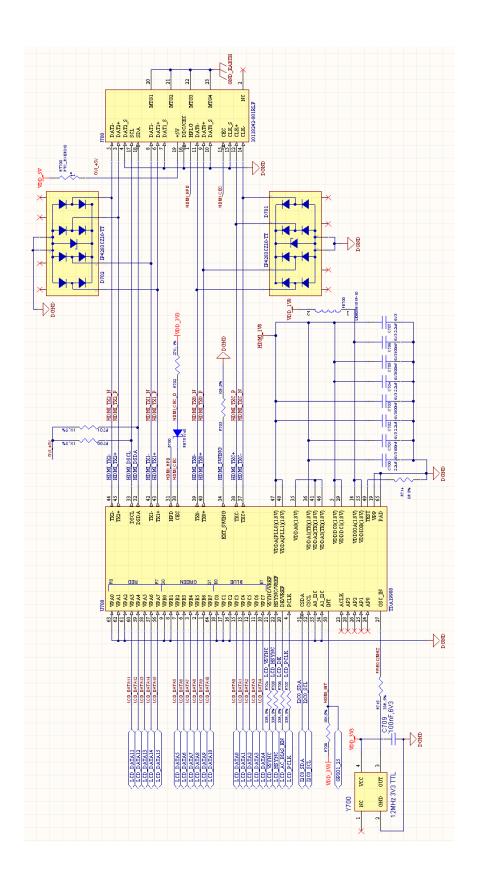
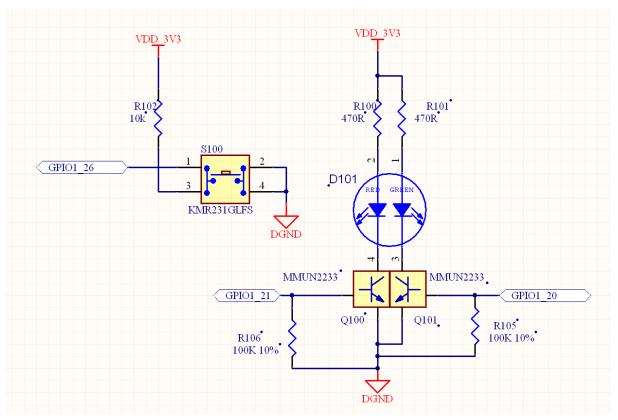


Figure 27 LCD Full-HD HDMI circuit example


ISEE 2007 S.L. All rights reserved, IGEP is a registered trademark from ISEE 2007 S.L. The following is provided for informational purposes only. NIF:ESB64377005 Document: MAN-PR-IGEP0033-RBxx-002 / Revision: 3.0 / Date: 27/06/2015

Pin	Volt	Dev	Main Function	Main	Type	Fixed	Comments
	Level	Pin		MUX		Function	
117	3V3	U10	LCD_DATA23	1	OUT	No	LCD data bus
118	3V3	U12	LCD_DATA20	1	OUT	No	LCD data bus
119	3V3	V13	LCD_DATA17	1	OUT	No	LCD data bus
120	3V3	U4	LCD_DATA11	0	IO	No	LCD data bus. High value PU/PD used for SYSBOOT
121	3V3	V2	LCD_DATA12	0	IO	No	LCD data bus. High value PU/PD used for SYSBOOT
122	3V3	V3	LCD_DATA13	0	10	No	LCD data bus. High value PU/PD used for SYSBOOT
123	3V3	V4	LCD_DATA14	0	IO	No	LCD data bus. High value PU/PD used for SYSBOOT
124	3V3	Т5	LCD_DATA15	0	10	No	LCD data bus. High value PU/PD used for SYSBOOT
125	3V3	T10	LCD_DATA22	1	OUT	No	LCD data bus
126	3V3	T12	LCD_DATA19	1	OUT	No	LCD data bus
127	3V3	T2	LCD_DATA5	0	10	No	LCD data bus. High value PU/PD used for SYSBOOT
128	3V3	T3	LCD_DATA6	0	10	No	LCD data bus. High value PU/PD used for SYSBOOT
130	3V3	T4	LCD_DATA7	0	10	No	LCD data bus. High value PU/PD used for SYSBOOT
131	3V3	Uı	LCD_DATA8	0	10	No	LCD data bus. High value PU/PD used for SYSBOOT
132	3V3	U2	LCD_DATA9	0	10	No	LCD data bus. High value PU/PD used for SYSBOOT
133	3V3	U3	LCD_DATA10	0	10	No	LCD data bus. High value PU/PD used for SYSBOOT
134	3V3	T11	LCD_DATA21	1	OUT	No	LCD data bus
135	3V3	R12	LCD_DATA18	1	OUT	No	LCD data bus
136	3V3	U13	LCD_DATA16	1	OUT	No	LCD data bus
137	3V3	Rı	LCD_DATAo	0	IO	No	LCD data bus. High value PU/PD used for SYSBOOT
138	3V3	R2	LCD_DATA1	0	10	No	LCD data bus. High value PU/PD used for SYSBOOT
139	3V3	R ₃	LCD_DATA2	0	10	No	LCD data bus. High value PU/PD used for SYSBOOT
140	3V3	R4	LCD_DATA3	0	10	No	LCD data bus. High value PU/PD used for SYSBOOT
141	3V3	Tı	LCD_DATA4	0	10	No	LCD data bus. High value PU/PD used for SYSBOOT
143	3V3	R5	LCD_HSYNC	0	OUT	No	LCD Horizontal Sync
144	3V3	U5	LCD_VSYNC	0	OUT	No	LCD Vertical Sync
145	3V3	R6	LCD_AC_BIAS_	0	OUT	No	LCD AC bias enable chip select
			EN				
146	3V3	V5	LCD_PCLK	0	OUT	No	LCD pixel clock

Table 16 LCD pins

4.14 GPIO: General Purpose Input Output

GPIOs are input/output (IO) general purpose pins used to control LEDs, relays, switch, etc. In the next figure is shown a basic circuit with an input pushbutton and two outputs to manage LED signals.

Figure 28 GPIOs example: control circuit to manage LEDs

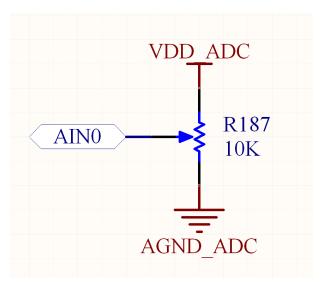

Pin	Volt	Dev	Main Function	Main	Туре	Fixed	Comments
	Level	Pin		MUX		Function	
72	3V3	U16	GPIO1_25	7	10	No	General purpose input/output
73	3V3	C12	GPIO _{3_17}	7	IO	No	General purpose input/output
74	3V3	C18	GPIOo_7	7	10	No	General purpose input/output
75	3V3	U18	GPIO1_28	7	10	No	General purpose input/output
77	3V3	A15	GPIOo_19	7	10	No	General purpose input/output
78	3V3	D14	GPIOo_20	7	10	No	General purpose input/output
79	3V3	V12	GPIO2_1	7	10	No	General purpose input/output
80	3V3	T13	GPIO2_0	7	10	No	General purpose input/output
148	3V3	V14	GPIO1_17	7	10	No	General purpose input/output
151	3V3	U15	GPIO1_22	7	10	No	General purpose input/output
153	3V3	T16	GPIO1_26	7	10	No	General purpose input/output
154	3V3	V15	GPIO1_21	7	10	No	General purpose input/output
155	3V3	R14	GPIO1_20	7	10	No	General purpose input/output
197	3V3	C14	GPIO _{3_7}	7	10	No	General purpose input/output

Table 17 GPIO pins

4.15 ADC: General Purpose Analog-to-Digital Converter

The IGEP[™] COM AQUILA AM₃₃₅x includes an analog-to-digital converter subsystem. It's an 8-channel general-purpose converter, with a subsystem to interface with a resistive touchscreen (for a 4-wire, 5-wire and 8-wire resistive panel).

In the next figure is one of the more basic connections to input an analogue voltage signal to the module via an ADC pin.

Figure 29 ADC example circuit

Pin	Volt Level	Dev Pin	Main Function	Main MUX	Туре	Fixed Function	Comments
183	GND	E8	VSSA_ADC	NA	Power	Yes	Analog Ground for ADCs
184	1V8	D8	VREFP_ADC	NA	Power	Yes	Supply voltage range for ADCs
185	ANAL	B6	AlNo	0	IN	Yes	General purpose ADC channel o
	OG						
186	ANAL	C7	AlNı	0	IN	Yes	General purpose ADC channel 1
	OG						
187	ANAL	B7	AIN2	0	IN	Yes	General purpose ADC channel 2
	OG						
188	ANAL	A7	AIN ₃	0	IN	Yes	General purpose ADC channel 3
	OG						
189	ANAL	C8	AIN4	0	IN	Yes	General purpose ADC channel 4
	OG						
190	ANAL	B8	AIN5	0	IN	Yes	General purpose ADC channel 5
	OG						
191	ANAL	A8	AIN6	0	IN	Yes	General purpose ADC channel 6
	OG						
192	ANAL	C9	AIN ₇	0	IN	Yes	General purpose ADC channel 7
	OG						

Table 18 ADC pins

4.16 ENVIRONMENTAL SPECIFICATION

Temperature Specification

General _Specification	Operating	Non-operating
Industrial grade (E2)	-40°C to +85°C	-40°C to +85°C

Table 19 Temperature Specification

Standard modules are available for industrial grade temperature range.

The operating temperature is the maximum measurable temperature on any spot on the module's surface.

4.17 STANDARDS AND CERTIFICATION RoHS

The IGEPTM COM AQUILA AM₃₃₅x is compliant to the directive 2002/95/EC on the restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment.

Assembly Standards

In the assembly of the modules, there are different standards respected.

The components reception is made according tables MIL-STD-105E for sampling and verification guideline of bought products.

In the assembly of SMD components is applied the standard IPC-A-610-E (visual quality acceptability requirements for electronic assemblies).

It is also made an electric test over 100% of modules manufactured.

4.18 MTBF

The IGEP[™] COM AQUILA AM335x MTBF (hours) : >100,000 hours

The above MTBF (Mean Time Between Failure) values were calculated using a combination of manufacturer's test data, if the data was available, and a Bellcore calculation for the remaining parts. The Bellcore calculation used is "Method 1 Case 1". In that particular method the components are assumed to be operating at a 50 % stress level in a 40 °C ambient environment and the system is assumed to have not been burned in.

Manufacturer's data has been used wherever possible. The manufacturer's data, when used, is specified at 50 °C, so in that sense the following results are slightly conservative. The MTBF values shown below are for a 40 °C in an office or telecommunications environment. Higher temperatures and other environmental stresses (extreme altitude, vibration, salt water exposure, etc.) lower MTBF values.

4.19 MECHANICAL SPECIFICATION Module Dimension

o 67,60mm x 26,00mm x 4mm

Mechanical Drawing

The next figures show the IGEP[™] COM AQUILA AM₃₃₅x modules mechanical dimensions:

- All dimensions are in millimeters.
- o 10-layer Printed Circuit Board size is 67.60x26x1mm.
- o mounting holes are provided, one on each corner.

Figure 30 IGEP[™] COM AQUILA AM₃₃₅× Main Outline Dimensions

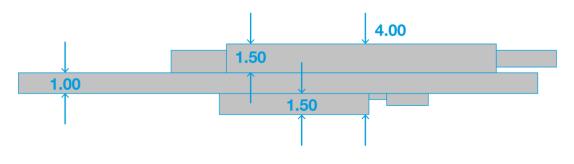


Figure 31 IGEP[™] COM AQUILA AM335x Lateral View Widths Dimensions

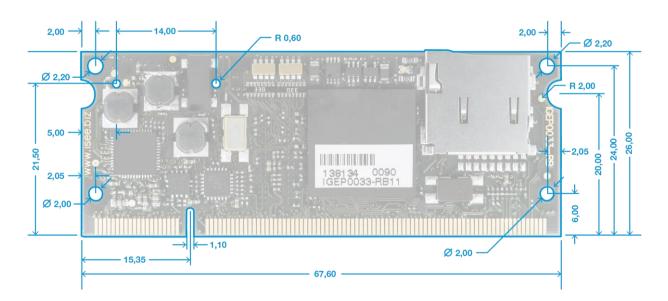


Figure 32 IGEP[™] COM AQUILA AM335x TOP side view detailed mechanical

5 ON-BOARD INTERFACES

5.1 SUMMARY

Device	Connector	Reference	Comments		
microSD	microSD SOCKET	J700	On-board. Bootable device.		
LED	-	D100	Power & GPIO controlled		
JTAG	15pin 1mm pitch interface	J800	Mates with compression connector		
SODIMM-200	200-pin SODIMM interface	К100	Expand many functionalities from AM335x SITARA		
	DDR1 standard 2V5		processor		

Table 20 Interface Summary

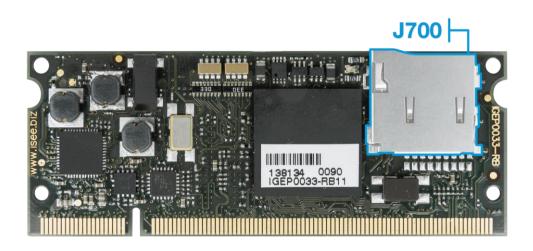
5.2 SD: Secure Digital Reader

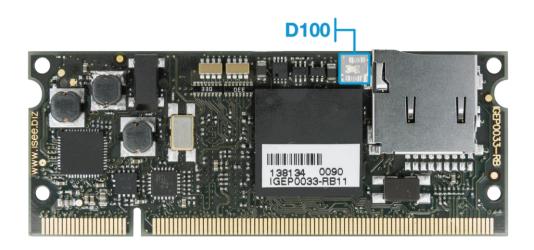
The on-board micro-SD socket uses the MMCo controller of the AM₃₃₅x processor. The module can boot from this SD socket (see 6-SODIMM-200 EXPANSION CONNECTOR INTERFACE chapter for details).

The interface provides the following features:

- Full compliance with MMC_{4.3} and command/response sets as defined in the SD Memory Card Specifications v2.0
- o 4-bit MMC/SD/SDIO Mode 3V3 operation
- o Up to 48MHz Data Transfer Rate
- o Designed for low power

Compatible with SD/SDHC (up to 32 GB).




Figure 33 J700 MICRO SD Socket area

5.3 LEDs

The IGEP[™] COM AQUILA AM₃₃₅x module provides one bicolor LED indicator on the board. One LED can be controlled by the user.

Signal Name	LED Color	Description	
3V3	Red	3V3 Internal Power signal	
GPIO1_23	Green	GPIO1_23 of AM335x	

Table 21 LEDs pins

Figure 34 D100 LED area

5.4 JTAG

The IGEPTM COM AQUILA AM₃₃₅x provides a foot print JTAG interface to help you develop your code. The signals can be accessed by means of a compression connector placed on a base board, correctly centered to interface the metal contacts placed on the bottom side of the module.

Figure 35 J800 JTAG Interface area

The recommended compression connector part number to be used is FSI-115-03-GS-AD from SAMTEC manufacturer; this is a 15-pin single row 1mm pitch compression connector with 3mm height. The height of this connector has to be in accordance with the height of the used SODIMM 200-pin connector. A double row version can also be used; in this case part number will be FSI-115-03-GD-AD and the second row will not be used so it is better if you leave even pins unconnected.

The next figure shows (a) how to match compression connector with the module board J800, (b) double row compression connector and (c) single row compression connector.

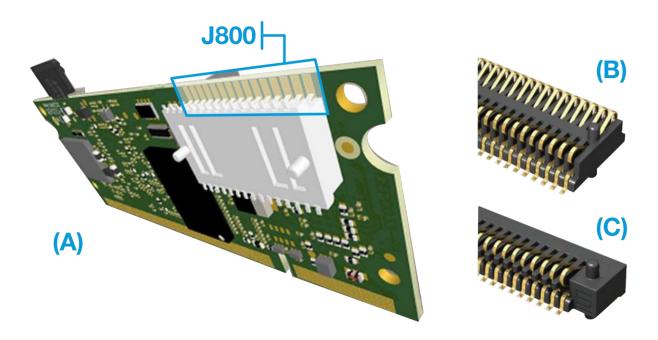


Figure 36 J800 JTAG Interface: compression connector

The next figure shows the pin out schematic and the corresponding metal contacts.

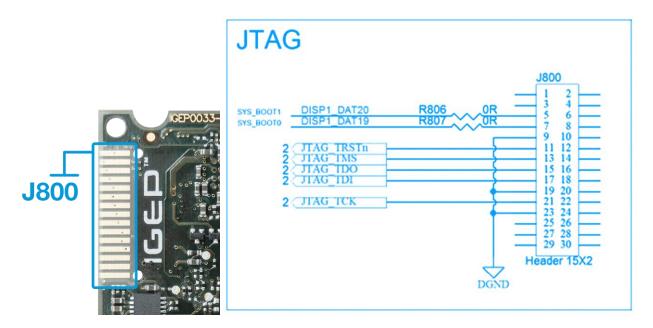


Figure 37 J800 JTAG Interface: foot print and schematic

Note that even pins are left unconnected but the footprint makes possible to use a double row compression connector. The next table details the signals on each pin of J800.

Signal Name	J800 JTAG PIN	Description				
NC	1	Not Connected				
NC	3	Not Connected				
SYS_BOOT1	5	Bit 1 of the BOOT configuration				
SYS_BOOTo	7	Bit o of the BOOT configuration				
DGND	9	Digital Ground				
TRSTn	11	JTAG Test Reset Input Signal				
TMS	13	JTAG Test Mode Select Input Signal				
TDO	15	JTAG Test Data Output Signal				
TDI	17	JTAG Test Data Input Signal				
DGND	19	Digital Ground				
ТСК	21	JTAG Test Clock Input Signal				
DGND	23	Digital Ground				
NC	25	Not Connected				
NC	27	Not Connected				
NC	29	Not Connected				

Table 22 JTAG pins

For additional details about JTAG, please refer to AM₃₃₅× ARM Cortex[™]-A8 Microprocessors (MPUs) Technical Reference Manual.

6 SODIMM-200 EXPANSION CONNECTOR INTERFACE

The IGEPTM COM AQUILA AM₃₃₅x has 1 SODIMM-200 interface (K100) composed by 200 metal contacts, 100 on TOP side (odd numbers) and 100 on BOTTOM side (even numbers), providing source power and up to 140 signals at $_{3}V_{3}$ CMOS to support lots of features of AM₃₃₅x processor that can be used in your custom baseboard.

The next figure shows the area and pin numbering of the SODIMM-200 interface:

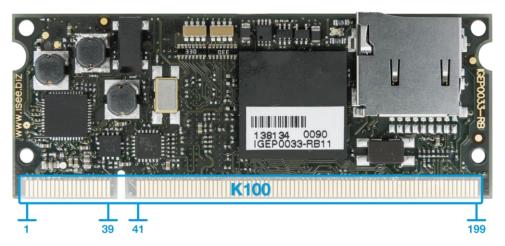


Figure 38 K100 SODIMM-200 interface area (TOP SIDE, odd pin numbering)

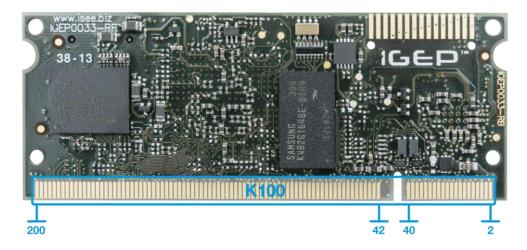


Figure 39 K100 SODIMM-200 interface area (BOTTOM SIDE, even pin numbering)

The IGEP[™] COM AQUILA AM₃₃₅x modules can be inserted like a target through this SODIMM-200 interface to any of the standard SODIMM-200 connectors existing on the market. Some valid references are:

MANUFACTURER	PART NUMBER	HEIGHT
TE CONNECTIVITY	1473005-1	5,2mm
FOXCONN	ASoA426-E4SN-7F	4mm
TYCO ELECTRONICS	1565691-1	4mm
FOXCONN	ASoA426-E2SN-7F	5,2mm
ADMATEC	SODIMM200S92T25	9,2mm

Table 23 Valid SODIMM-200 connectors part numbers

You must consider the SODIMM-200 connector height depending on your base board needs.

6.1 PINOUT TABLE OF SODIMM-200 EXPANSION INTERFACE

In this chapter is reflected a table with all the pinout details for the SODIMM-200 expansion interface. In that, are collected all the pins with its main functions. The meanings of each column and the colors used in rows are next.

COLUMN	INFORMATION PROVIDED					
PIN	Indicates the pin number of the SODIMM-200 interface.					
VOLTAGE LEVEL	Signal level voltage.					
	5V	5V signal				
	3V3	3,3 V signal				
	1V8	1,8 V signal				
	VBAT	Battery power				
	DIF	Differential pair signal				
	ANALOG	Analog signal				
	GND	Digital ground				
	AGND	Analog ground				
	NC	No connected. This pin should be floating				
DEV PIN	Internal main	device pin number related to the AM335x processor.				
MAIN FUNCTION	Main or sugg	ested function.				
MAIN MUX	Mode numbe	r for the main function.				
TYPE	Indicates pin type.					
	POWER	Power signal				
	IN	CMOS input pin				
	OUT	CMOS output pin				
	10	CMOS input and output pin				
	ETH	Ethernet physical pin				
	USB	USB line				
	NC	No connected. This pin should be floating				
	VK	Power supply from battery				
FIXED FUNCTION	Indicates if the pin function is configurable or not.					
	Pin functionality or mux configuration can't be changed					
	NO	Pin can be configured as another peripheral (mux configurable). See MUX chapter for more information.				
COMMENTS	Clarifications	for the related SODIMM-200 pin. See Device chapter for more information.				

ROW COLOR	INFORMATION PROVIDED			
GREY	NC	No connected		
BLUE	VIN	Input power		
VIOLET	VOUT	Output power		
CINNAMON	RTC	RTC battery positive signal		
LIGHT GREEN	DGND	Digital ground		
DARK GREEN	AGND	Analog ground		
YELLOW	ETH	Ethernet group		
LIGHT BROWN	USBo	USB OTG		
DARK BROWN	USB1	USB HOST		
RED		Control and Boot signals		
WHITE		Low level peripherals		

	DIM -200		INTERNAL D	EVICE			COMMENTS		
Pin	Voltage level	Dev Pin	Main function	Main MUX	Туре	Fixed Function			
	icver	F 111		5V INPU	UT POV				
1	5V	NC	VIN	NA	POWER	Yes			
2	5V	NC	VIN	NA	POWER	Yes	Pins used to power up the module Source violation chould be between $4N = 5N$		
3	5V	NC	VIN	NA	POWER	Yes	Source voltage should be between 4V-5.5V		
4	5V	NC	VIN	NA	POWER	Yes	1		
			3	V3 OUT	PUT PC	OWER	•		
5	3V3	NC	VOUT	NA	POWER	Yes	Pins 5,6,7,9,10,11 and 12 used as external 3V3@1A		
6	3V3	NC	VOUT	NA	POWER	Yes	source voltage for a base board		
7	3V3	NC	VOUT	NA	POWER	Yes			
				BOO	T MOD	E			
8	3V3	T1	#SYS_BOOT4	0	IN	Yes	SYS_BOOT4 signal inverted. Sequence should be: NC: UART0→ SPI0→ XIP → MMC0 Tied to GND: NAND→ NANDI2C→ MMC0 → UART0		
			3	V3 OUT	PUT PC	OWER			
9	3V3	NC	VOUT	NA	POWER	Yes			
10	3V3	NC	VOUT	NA	POWER	Yes	Pins 5,6,7,9,10,11 and 12 used as external 3V3@1A		
11	3V3	NC	VOUT	NA	POWER	Yes	source voltage for a base board		
12	3V3	NC	VOUT	NA	POWER	Yes	1		
CONTROL SIGNALS									
13	VBAT	NC	RTC_BATTERY	NA	POWER	Yes	RTC battery positive pin. Battery or capacitor limit voltage should be: 2V52; 3V; 3V15 and VIN		
14	5V	NC	#PWRKILL	NA	IN	Yes	Tied to GND to cut off power sources from PMIC		
15	3V3	B14	#RESET_OUT	7	OUT	Yes	This pins is used as external reset source for a base board Active Low		
16	3V3	B15	PORZ	0	Ю	Yes	Power ON Reset. Active Low.		
17	3V3	A10	WARMRSTn	0	Ю	Yes	Warm Reset. Active Low.		
18	GND	NC	DGND	NA	POWER	Yes	Digital Ground		
			1	ETH	ERNET	- -			
19	DIF	NC	ETN_TXM	NA	ETH	Yes	Analog Transmit Data Negative. Differential output to magnetics		
20	3V3	NC	#ETN_LED2	NA	OUT	Yes	Active Low. LED2 Yellow means 100Mbps speed. Inactive if 10Mbps. Line isolated through a driver.		
21	DIF	NC	ETN_TXP	NA	ETH	Yes	Analog Transmit Data Positive. Differential output to magnetics		
22	3V3	NC	ETN_3V3	NA	POWER	Yes	3V3 to magnetics		
23	DIF	NC	ETN_RXM	NA	ETH	Yes	Analog Receive Data Negative. Differential output to magnetics		
24	3V3	NC	#ETN_LED1	NA	OUT	Yes	Active Low. LED1 Green indicates valid link and blinks when there is activity. Line isolated through a driver		
25	DIF	NC	ETN_RXP	NA	ETH	Yes	Analog Receive Data Poitive. Differential output to magnetics		
26	GND	NC	DGND	NA	POWER	Yes	Digital Ground		
				USE	B HOST				
27	3V3	F15	USB1_DRVVBUS	0	OUT	Yes	Active High. Enables external VBUS power supply		
28	3V3	R13	GPIO1_16	7	IN	No	#USB1_OC: Active Low. Over current indication to module. It could be another GPIO from uP.		
29	DIF	R18	USB1_DM	0	USB	Yes	Analog D- data pin of the USB cable		
30	5V	T18	USB1_VBUS	0	POWER	Yes	VBUS pin of the USB cable.		
31	DIF	R17	USB1_DP	0	USB	Yes	Analog D+ data pin of the USB cable		
32	GND	NC	DGND	NA	POWER	Yes	Digital Ground		

	DIM -200		INTERNAL D	EVICE			COMMENTS
Pin	Voltage	Dev Pin	Main function	Main MUX	Туре	Fixed function	
					B OTG	Tunction	
33	ANALO G	P16	USB0_ID	0	USB	Yes	ID pin of the USB cable. A-device is grounded; B-device is floating
34	3V3	F16	USB0_DRVVBUS	0	OUT	Yes	Active High. Enables external VBUS power supply
35	DIF	N18	USB0_DM	0	USB	Yes	Analog D- data pin of the USB cable
36	3V3	V17	GPIO1_27	7	IN	No	#USB0_OC: Active Low. Over current indication to module. It could be another GPIO from uP.
37	DIF	N17	USB0_DP	0	USB	Yes	Analog D+ data pin of the USB cable
38	5V	P15	USB0_VBUS	0	POWER	Yes	VBUS pin of the USB cable.
39	GND	NC	DGND	NA	POWER	Yes	Digital Ground
				I2C IN	TERFA	CE	
40	3V3	C17	I2C0_SDA	0	Ю	Yes	I2C0 bus data. 0x2D is used. by IGEP COM Aquila This signal has a 5K PU resistor.
41	3V3	C16	I2C0_SCL	0	Ю	Yes	I2C0 bus clock. This signal has a 5K PU resistor.
				Р	WM		
42	NC	NC	No connected	NA	NC	NA	No connected
			OWIRE	E: ONE V	VIRE II	NTERFAC	CE
43	NC	NC	No connected	NA	NC	NA	No connected
	r		CSPI: SERL	AL PER	PHERA	AL INTER	RFACE
44	3V3	A16	SPI0_CS0	0	OUT	No	SPI0 Slave chip select 0 signal
45	3V3	C15	SPI0_CS1	0	OUT	No	SPI0 Slave chip select 1 signal
46	3V3	B17	SPI0_D0	0	OUT	No	SPI0 Master Output-Slave Input (MOSI)
47	3V3	B16	SPI0_D1	0	IN	No	SPI0 Master Input-Slave Output (MISO)
48	3V3	A17	SPI0_SCLK	0	OUT	No	SPI0 Clock
49	NC	NC	No connected	NA	NC	NA	No connected
50	GND	NC	DGND	NA	POWER	Yes	Digital Ground
	r		uSD1: SEC	URE DI	GITAL	INTERFA	
51	3V3	B13	MMC1_SDCD	4	IN	No	SD Card Detect for MMC1. There are no components between this pin and AM335x ball
52	3V3	K18	MMC1_DAT0	4	Ю	No	MMC/SD/SDIO 1 Data Bus 0. There are no components between this pin and AM335x ball
53	3V3	L18	MMC1_DAT1	4	Ю	No	MMC/SD/SDIO 1 Data Bus Bus 1. There are no components between this pin and AM335x ball
54	3V3	L17	MMC1_DAT2	4	Ю	No	MMC/SD/SDIO 1 Data Bus 2. There are no components between this pin and AM335x ball
55	3V3	L16	MMC1_DAT3	4	Ю	No	MMC/SD/SDIO 1 Data Bus 3. There are no components between this pin and AM335x ball
56	3V3	V9	MMC1_CMD	2	Ю	No	MMC/SD/SDIO 1 Command. There are no components between this pin and AM335x ball
57	3V3	U9	MMC1_CLK	2	ю	No	MMC/SD/SDIO 1 Clock There are no components between this pin and AM335x ball
58	GND	NC	DGND	NA	POWER	Yes	Digital Ground
				1 ST	UART		
59	3V3	E16	UART0_TXD	0	OUT	No	Debug UART0 Transmit Data Output
60	3V3	E15	UART0_RXD	0	IN	No	Debug UART0 Receive Data Intput
61	3V3	E18	UART0_CTSn	0	IN	No	UART0 CTSn Input
62	3V3	E17	UART0_RTSn	0	OUT	No	UART0 RTSn Output
				2^{ND}	UART		
63	3V3	D15	UART1_TXD	0	OUT	No	UART1 Transmit Data Output
64	3V3	D16	UART1_RXD	0	IN	No	UART1 Receive Data Intput
65	3V3	D18	UART1_CTSn	0	IN	No	UART1 CTSn Input
66	3V3	D17	UART1_RTSn	0	OUT	No	UART1 RTSn Output

SODIM M-200INTERNAL DEVICECOMMENTS						COMMENTS			
Pin	Voltage			Main function Main Type Fixed					
	Fin Dev Fin Municipal MUX Type function 3 RD UART 3								
67	3V3	J17	UART5_TXD	3	OUT	No	UART5 Transmit Data Output		
68	3V3	H16	UART5_RXD	3	IN	No	UART5 Receive Data Intput		
69	NC	C NC No connected NA NC NA No connected		No connected					
70	NC	NC	No connected	NA	NC	NA	No connected		
71	GND	NC	DGND	NA	POWER	Yes	Digital Ground		
				GPIO	D / CAN	1			
72	3V3	U16	GPIO1_25	7	ю	No	General purpose input/output		
73	3V3	C12	GPIO3_17	7	ю	No	General purpose input/output		
74	3V3	C18	GPIO0_7	7	ю	No	General purpose input/output		
75	3V3	U18	GPIO1_28	7	ю	No	General purpose input/output		
76	3V3	J18	DCAN0_TX	1	0	No	CAN0 Transmission line		
77	3V3	A15	GPIO0_19	7	ю	No	General purpose input/output		
78	3V3	D14	GPIO0_20	7	ю	No	General purpose input/output		
79	3V3	V12	GPIO2_1	7	ю	No	General purpose input/output		
80	3V3	T13	GPIO2_0	7	ю	No	General purpose input/output		
81	3V3	K15	DCAN0_RX	1	I	No	CAN0 Reception line		
82	GND	NC	DGND	NA	POWER	Yes	Digital Ground		
			SSI 1:	SERIAI	L AUDI	O PORT 1			
83	3V3	D12	MCASP0_AXR0	0	ю	No	McASP0 Serial Data (IN/OUT) 0		
84	3V3	D13	MCASP0_AXR1	0	ю	No	McASP0 Serial Data (IN/OUT) 1		
85	3V3	A14	MCASP0_AHCLKX	0	ю	No	McASP0 Transmit Master Clock		
86	3V3	B12	MCASP0_ACLKR	0	ю	No	McASP0 Receive Bit Clock		
87	3V3	C13	MCASP0_FSR	0	ю	No	McASP0 Receive Frame Sync		
88	GND	NC	DGND	NA	POWER	Yes	Digital Ground		
	-		SSI 2:	SERIAI	L AUDI	O PORT 2	2		
89	NC	NC	No connected	NA	NC	NA	No connected		
90	NC	NC	No connected	NA	NC	NA	No connected		
91	NC	NC	No connected	NA	NC	NA	No connected		
92	NC	NC	No connected	NA	NC	NA	No connected		
93	NC	NC	No connected	NA	NC	NA	No connected		
94	GND	NC	DGND	NA	POWER	Yes	Digital Ground		
			uSD2: SEC	URE DI	GITAL	INTERFA	ACE 2		
95	NC	NC	No connected	NA	NC	NA	No connected		
96	NC	NC	No connected	NA	NC	NA	No connected		
97	NC	NC	No connected	NA	NC	NA	No connected		
98	NC	NC	No connected	NA	NC	NA	No connected		
99	NC	NC	No connected	NA	NC	NA	No connected		
100	NC	NC	No connected	NA	NC	NA	No connected		
101	NC	NC	No connected	NA	NC	NA	No connected		
102	GND	NC	DGND	NA	POWER	Yes	Digital Ground		

SODIM M-200INTERNAL DEVICECOMMENTS								
Pin	Voltage	Dev Pin	Main function	Main	Туре	Fixed		
CMOS SENSOR INTERFACE								
103 NC NC NA NC NA No connected								
104	NC	NC	No connected	NA	NC	NA	No connected	
105	NC	NC	No connected	NA	NC	NA	No connected	
106	NC	NC	No connected	NA	NC	NA	No connected	
107	NC	NC	No connected	NA	NC	NA	No connected	
108	NC	NC	No connected	NA	NC	NA	No connected	
109	NC	NC	No connected	NA	NC	NA	No connected	
110	NC	NC	No connected	NA	NC	NA	No connected	
111	GND	NC	DGND	NA	POWER	Yes	Digital Ground	
112	NC	NC	No connected	NA	NC	NA	No connected	
113	NC	NC	No connected	NA	NC	NA	No connected	
114	NC	NC	No connected	NA	NC	NA	No connected	
115	NC	NC	No connected	NA	NC	NA	No connected	
116	GND	NC	DGND	NA	POWER	Yes	Digital Ground	
				LCD CO	NTROI	LLER		
117	3V3	U10	LCD_DATA23	1	0	No	LCD data bus	
118	3V3	U12	LCD_DATA20	1	0	No	LCD data bus	
119	3V3	V13	LCD_DATA17	1	0	No	LCD data bus	
120	3V3	U4	LCD_DATA11	0	ю	No	LCD data bus. High value PU/PD used for SYSBOOT	
121	3V3	V2	LCD_DATA12	0	ю	No	LCD data bus. High value PU/PD used for SYSBOOT	
122	3V3	V3	LCD_DATA13	0	ю	No	LCD data bus. High value PU/PD used for SYSBOOT	
123	3V3	V4	LCD_DATA14	0	ю	No	LCD data bus. High value PU/PD used for SYSBOOT	
124	3V3	T5	LCD_DATA15	0	ю	No	LCD data bus. High value PU/PD used for SYSBOOT	
125	3V3	T10	LCD_DATA22	1	0	No	LCD data bus	
126	3V3	T12	LCD_DATA19	1	0	No	LCD data bus	
127	3V3	T2	LCD_DATA5	0	ю	No	LCD data bus. High value PU/PD used for SYSBOOT	
128	3V3	T3	LCD_DATA6	0	ю	No	LCD data bus. High value PU/PD used for SYSBOOT	
129	GND	NC	DGND	NA	POWER	Yes	Digital Ground	
130	3V3	T4	LCD_DATA7	0	ю	No	LCD data bus. High value PU/PD used for SYSBOOT	
131	3V3	U1	LCD_DATA8	0	Ю	No	LCD data bus. High value PU/PD used for SYSBOOT	
132	3V3	U2	LCD_DATA9	0	Ю	No	LCD data bus. High value PU/PD used for SYSBOOT	
133	3V3	U3	LCD_DATA10	0	ю	No	LCD data bus. High value PU/PD used for SYSBOOT	
134	3V3	T11	LCD_DATA21	1	0	No	LCD data bus	
135	3V3	R12	LCD_DATA18	1	0	No	LCD data bus	
136	3V3	U13	LCD_DATA16	1	0	No	LCD data bus	
137	3V3	R1	LCD_DATA0	0	ю	No	LCD data bus. High value PU/PD used for SYSBOOT	
138	3V3	R2	LCD_DATA1	0	ю	No	LCD data bus. High value PU/PD used for SYSBOOT	
139	3V3	R3	LCD_DATA2	0	ю	No	LCD data bus. High value PU/PD used for SYSBOOT	
140	3V3	R4	LCD_DATA3	0	ю	No	LCD data bus. High value PU/PD used for SYSBOOT	
141	3V3	T1	LCD_DATA4	0	ю	No	LCD data bus. High value PU/PD used for SYSBOOT	
142	GND	NC	DGND	NA	POWER	Yes	Digital Ground	

	SODIM M-200INTERNAL DEVICECOMMENTS							
Pin	Voltage	Dev Pin	Main function	Aain function Main Type		Fixed function		
143	3V3	R5	LCD_HSYNC	0	OUT	No	LCD Horizontal Sync	
144	3V3	U5	LCD_VSYNC	0	OUT	No	LCD Vertical Sync	
145	3V3	R6	LCD_AC_BIAS_EN	0	OUT	No	LCD AC bias enable chip select	
146	3V3	V5	LCD_PCLK	0	OUT	No	LCD pixel clock	
147	GND	NC	DGND	NA	POWER	Yes	Digital Ground	
			OTHER SI	GNALS	(ADCs	, GPIOs, P	PWM)	
148	3V3	V14	GPIO1_17	7	ю	No	General purpose input/output	
149	3V3	U14	EHRPWM1A	6	OUT	No	eHRPWM1 A output.	
150	3V3	T14	EHRPWM1B	6	OUT	No	eHRPWM1 B output.	
151	3V3	U15	GPIO1_22	7	Ю	No	General purpose input/output	
152	NC	NC	No connected	NA	NC	NA	No connected	
153	3V3	T16	GPIO1_26	7	ю	No	General purpose input/output	
154	3V3	V15	GPIO1_21	7	ю	No	General purpose input/output	
155	3V3	R14	GPIO1_20	7	ю	No	General purpose input/output	
156	NC	NC	No connected	NA	NC	NA	No connected	
157	NC	NC	No connected	NA	NC	NA	No connected	
158	3V3	V16	McASP0_ACLKX	6	Ю	No	McASP0 Transmit Bit Clock	
159	NC	NC	No connected	NA	NC	NA	No connected	
160	GND	NC	DGND	NA	POWER	Yes	Digital Ground	
161	NC	NC	No connected	NA	NC	NA	No connected	
162	NC	NC	No connected	NA	NC	NA	No connected	
163	NC	NC	No connected	NA	NC	NA	No connected	
164	NC	NC	No connected	NA	NC	NA	No connected	
165	NC	NC	No connected	NA	NC	NA	No connected	
166	NC	NC	No connected	NA	NC	NA	No connected	
167	NC	NC	No connected	NA	NC	NA	No connected	
168	NC	NC	No connected	NA	NC	NA	No connected	
169	NC	NC	No connected	NA	NC	NA	No connected	
170	NC	NC	No connected	NA	NC	NA	No connected	
171	GND	NC	DGND	NA	POWER	Yes	Digital Ground	
172	NC	NC	No connected	NA	NC	NA	No connected	
173	NC	NC	No connected	NA	NC	NA	No connected	
174	NC	NC	No connected	NA	NC	NA	No connected	
175	NC	NC	No connected	NA	NC	NA	No connected	
176	NC	NC	No connected	NA	NC	NA	No connected	
177	NC	NC	No connected	NA	NC	NA	No connected	
178	NC	NC	No connected	NA	NC	NA	No connected	
179	NC	NC	No connected	NA	NC	NA	No connected	
180	NC	NC	No connected	NA	NC	NA	No connected	
181	NC	NC	No connected	NA	NC	NA	No connected	
182	NC	NC	No connected	NA	NC	NA	No connected	
183	AGND	E8	VSSA_ADC	NA	POWER	Yes	Analog Ground for ADCs	

	DIM -200		INTERNAL D	EVICE		COMMENTS	
Pin	Voltage level	Dev Pin	Main function	Main MUX	Туре	Fixed function	
184	1V8	D8	VREFP_ADC	NA	POWER	Yes	Supply voltage range for ADCs
185	ANALO G	B6	AIN0	0	IN	Yes	General purpose ADC channel 0
186	ANALO G	C7	AIN1	0	IN	Yes	General purpose ADC channel 1
187	ANALO G	B7	AIN2	0	IN	Yes	General purpose ADC channel 2
188	ANALO G	A7	AIN3	0	IN	Yes	General purpose ADC channel 3
189	ANALO G	C8	AIN4	0	IN	Yes	General purpose ADC channel 4
190	ANALO G	B8	AIN5	0	IN	Yes	General purpose ADC channel 5
191	ANALO G	A8	AIN6	0	IN	Yes	General purpose ADC channel 6
192	ANALO G	C9	AIN7	0	IN	Yes	General purpose ADC channel 7
193	1V8	C5	EXT_WAKEUP	0	IN	Yes	EXT_WAKEUP input
194	NC	NC	No connected	NA	NC	NA	No connected
195	NC	NC	No connected	NA	NC	NA	No connected
196	NC	NC	No connected	NA	NC	NA	No connected
197	3V3	C14	gpio3_7	7	Ю	No	General purpose input/output
198	NC	NC	No connected	NA	NC	NA	No connected
199	NC	NC	No connected	NA	NC	NA	No connected
200	GND	NC	DGND	NA	POWER	Yes	Digital Ground

Table 24 K100 SODIMM-200 pin out description

7 ELECTRICAL CHARACTERISTICS

Electrical parameter	Min	Тур	Max	Unit
5V INPUT POWER SUPPLY				
IGEP [™] COM AQUILA AM ₃₃₅ × DC INPUT POWER SUPPLY	3.8	5	5.5	V
IGEP [™] COM AQUILA AM335x DC INPUT SUPPLY Current ⁽¹⁾	80	400	550	mA
5V type pins				
5V type pins Input Voltage DC	4	5	5.5	V
3V3 OUTPUT POWER SUPPLY				
IGEP [™] COM AQUILA AM ₃₃₅ x DC OUTPUT POWER SUPPLY	3.1	3.3	3.5	V
IGEP [™] COM AQUILA AM ₃₃₅ x DC OUTPUT SUPPLY Current	0		1000	mA
JTAG, IN, OUT and IO LVCMOS type pins (2)				
Input/output High-Level DC voltage	2.85	3.3	3.4	V
Input/output Low-Level DC voltage	-0.1	0	0.45	V
Output drive current	0	0.5	1	mA
ETH type pins				
Input/output High-Level DC voltage	2.9	3.3	3.4	V
Input/output Low-Level DC voltage	-0.1	0	0.5	V
Output drive current	0	1	2	mA
USB type pins				
Input/output High-Level DC voltage	2.8	3.3	3.3	V
Input/output Low-Level DC voltage	-0.1	0	0.4	V
Output drive current	0	1	2	mA
RTC_BATTERY type pins				
Input DC voltage	0	3.1	5.5	V
ADC type pins				
Input DC voltage	0		1.8	V
Drive current	0		10	mA

Table 25 Electrical characteristics

(1) Current measured with default delivered software. Be aware that different software configurations could drastically modify current consumption.

(2) The electrical specification depends on the configured mode. For accurate information of each pin, revise AM335x Applications Processor official document from Texas Instruments official site <u>http://focus.ti.com</u>.

IGEP[™] COM AQUILA AM335x MODULES CAN BE DAMAGED IF ANY OF THESE ELECTRICAL LIMITS ARE EXCEEDED AND/OR ELECTROSTATIC DISCHARGE PRECAUTIONS ARE NOT FOLLOWED. **WARRANTY LOST** IF IMPROPER USE OF THE MODULE IS FOUND

8 LIST OF TABLES

Table 1 IGEP0033 Ordering Information	
Table 2 BASE0033 Ordering Information	
Table 3 On-board features	10
Table 4 Power Sources pins	
Table 5 Boot Mode pin	
Table 6 Control Signal pins	21
Table 7 Ethernet pins	23
Table 8 USB pins	26
Table 9 I2C pins	
Table 10 PWM pins	28
Table 11 SPI pins	29
Table 12 MMC pins	
Table 13 UART pins	
Table 14 CAN pins	
Table 15 McASP (I2S) pins	
Table 16 LCD pins	
Table 17 GPIO pins	
Table 18 ADC pins	
Table 19 Temperature Specification	40
Table 20 Interface Summary	
Table 21 LEDs pins	
Table 22 JTAG pins	
Table 23 Valid SODIMM-200 connectors part numbers	
Table 24 K100 SODIMM-200 pin out description	
Table 25 Electrical characteristics	56

9 LIST OF FIGURES

Figure 1 IGEP [™] COM AQUILA AM335x – Top View
Figure 2 IGEP [™] COM AQUILA AM335x – Bottom View
Figure 3 Texas Instruments [™] AM335x Family Features11
Figure 4 AM335x Processors Block Diagram12
Figure 5 IGEP [™] COM AQUILA AM335x Block Diagram13
Figure 6 Power Supply Input Diagram14
Figure 7 Power Supply Output Diagram14
Figure 8 RTC Battery15
Figure 9 Ground Connections
Figure 10 Boot Mode: Jumper Selector18
Figure 11 PowerKill Reset19
Figure 12 PORz – Power-On-Reset
Figure 13 WarmReset
Figure 14 Reset Out 20
Figure 15 Wake Up Input

Figure 16 Ethernet standard circuit	23
Figure 17 USB 2.0 Host connections	24
Figure 18 MiniUSB AB 2.0 OTG connections	25
Figure 19 I2C example: EEPROM connection	27
Figure 20 PWM example: RC filter	28
Figure 21 SPI example: accelerometer circuit	29
Figure 22 MMC example: uSD card reader	30
Figure 23 UARTo Debug connections	31
Figure 24 RS485 example: RS485 circuit	32
Figure 25 CAN Bus circuit example	33
Figure 26 I2S example: Stereo CODEC with Headphone AMP	34
Figure 27 LCD Full-HD HDMI circuit example	36
Figure 28 GPIOs example: control circuit to manage LEDs	38
Figure 29 ADC example circuit	39
Figure 30 IGEP [™] COM AQUILA AM335x Main Outline Dimensions	42
Figure 31 IGEP [™] COM AQUILA AM335x Lateral View Widths Dimensions	42
Figure 32 IGEP [™] COM AQUILA AM335x TOP side view detailed mechanical	42
Figure 33 J700 MICRO SD Socket area	43
Figure 34 D100 LED area	44
Figure 35 J8oo JTAG Interface area	44
Figure 36 J8oo JTAG Interface: compression connector	45
Figure 37 J800 JTAG Interface: foot print and schematic	46
Figure 38 K100 SODIMM-200 interface area (TOP SIDE, odd pin numbering)	47
Figure 39 K100 SODIMM-200 interface area (BOTTOM SIDE, even pin numbering)	47

10 CHANGE HISTORY

Revision	Date	Description
1.0	2013/Jan/28	 Preliminary version (IGEPoo33-RAxx)
2.0	2013/Jul/12	 Second version for revised pcb (IGEPoo33-RBxx) CYGNUS references deleted AQUILA references updated to AQUILA AM335x Document code/revision/date added to cover Footer added (page number and document/revision/date) Updated order information for IGEPoo33-RB1x, IGEPoo33-RB2x, IGEPoo33-RB3x and IGEPoo33-RB4x Generic Bloc Diagram for AM335x Updated pin out tables from RA change: swapped 28 pin <-> 34 pin change: 184 pin VREFP_ADC output voltatge (1v8) Minor changes
2.1	2013/Jul/22	 Quality revision Added TI AM335x Family Features figure Updated Bloc Diagram (2 Ethernet peripherals)
2.2	2013/Set/30	 Quality revision Change code IGEP0033-RB1x for AM3354 Change code IGEP0033-RB2x for AM3352
3.0	2016/Jun/27	 Quality revision Additions to USER INFORMATION chapter Additions to INTRODUCTION chapter Updated description in Ordering Information table Updated Features table Added informative chapter about the AM335x processor variants Added informative chapter about the AM335x processor variants Added informative chapter about the AM335x processor Updated Block Diagram Updated technical information Updated ON-BOARD INTERFACES chapter Updated SODIMM EXPANSION CONNECTOR INTERFACE chapter Changed pinout table of SODIMM-200 connector Updated electrical characteristics table

Please check for a newer revision of this manual at ISEE 2007 SL web site <u>http://www.isee.biz</u>